| Psychologie Cognitive: Lang                                                                                                 | age        |
|-----------------------------------------------------------------------------------------------------------------------------|------------|
| Introduction générale                                                                                                       | Juan Segui |
| <ul> <li>Perception de la parole 1<br/>notions de base, étapes prélexicales</li> </ul>                                      | P. Hallé   |
| <ul> <li>Perception de la parole 2<br/>accès lexical : segmentation, parallélisme,<br/>décours temporel, modèles</li> </ul> | п          |
| <ul> <li>Perception de la parole 3<br/>représentations et variations<br/>influence de l'orthographe</li> </ul>              | п          |
| CogMaster mardi 18 octobre 2011                                                                                             | 1          |
|                                                                                                                             |            |
|                                                                                                                             |            |
|                                                                                                                             |            |
|                                                                                                                             |            |
|                                                                                                                             |            |
|                                                                                                                             |            |
|                                                                                                                             |            |
|                                                                                                                             |            |
|                                                                                                                             |            |

### Récapitulation cours précédent

- segmentation into words: serendipitous versus explicit?
- time course of lexical access:
   continuous processing of the incoming input parallel, multiple activations => competition
- Cohort: a simple model of the time course of lexical access
- TRACE as a generalization of Cohort
- TRACE vs. Shortlist: lexical feedback vs. no feedback

<u>experimental paradigms</u>: priming paradigms (various prime-target relationships) word spotting vs. word monitoring, phoneme monitoring... visual-word (eye tracking)

• extra: "Christmas capes and foolish tapes"

2

Segmentation: utilise-t-on l'équivalent des espaces de l'écrit pour repérer les débuts/fins des mots ? (marques explicites), donc des indices prélexicaux? Ou bien les mots sont-ils reconnus sans besoin de ces marques ? (équivalent écrit: textes sans espaces, sans marques de ponctuation: c'est possible aussi)

Cutler's MSS: espaces pour débuts

Christophe: espaces entre mots si à cheval sur une frontière prosodique majeure: PP (et sans doute IP) mais pas PW

Expés de statistical learning: les récurrences, et/ou les TPs permettent de retenir des "mots" sans besoin d'espaces

=> raisonnable: les deux mécanismes coexistent: reconnaissance directe et aide des indices prosodiques (cf Shukla et al. 2007)

Time course: traitement continu au fur et à mesure de la disponibilité de l'input, avec hypothèses parallèles filtrées/éliminées en continu.

Cohorte: hypothèses alignées sur leur début; TRACE: toutes les hypothèses partageant l'input disponible, avec FB sur phonèmes

Shortlist et Merge: pas de FB lexical sur phonèmes

## questions essentielles pour l'accès au lexique

- (1) La <u>segmentation</u> de la parole continue en mots
  - pré-lexicale ? ('explicit': induite par des indices dans le signal)
  - sous-produit de la reconnaissance ? ('serendipitous')
- (2) La <u>reconnaissance</u> proprement dite des mots : (étapes proposées par Frauenfelder & Tyler, 1987)
- (a) <u>contact</u> initial (input-form <--> lexical form => *hypotheses*)
  - (b) <u>sélection</u> (best match, threshold match => *select one entry*)
  - (c) <u>intégration</u> (access to lexical entry information)
- (3) Les (possibles) <u>interactions</u> entre niveau lexical et niveaux "supérieurs" (syntaxique, sémantique, pragmatique) ou "inférieurs" (sub-lexicaux)

3

We have treated so far segmentation (1) and time course of 'multiple candidates' generation and competition (2.b) and introduced the notion of between-level interactions (in Cohort and TRACE).

We now focus on the crucial 'initial contact' issue: what mental representations underlie comparison between input form and stored lexical forms?

Frauenfelder, U. H., & Tyler, L. K. (1987). The process of spoken word recognition: An introduction. Cognition, 25, 1–20.

### Plan

- lexical representations used in the "contact" stage
  - abstract repr.: combinations of sub-lexical linguistic units
  - exemplars: whole-word traces in episodic memory
- how listeners deal with variation
  - random vs. rule-based variation
- interactions between the processing of speech and print
  - [- speech influences print processing] (more with Boris New)
  - orthographic code influences speech processing: on-line and off-line tasks
- <u>exposés</u> : (1) "bouton-bouteille"
  - (2) "castle-hassle"

### Contact avec le lexique (*input form* <—> *lexical form*)

• Quel(s) type(s) de représentation(s) permettent de comparer "formes d'entrée" et "formes lexicales stockées" ?

### (A) représentations abstraites :

combinaisons d'unités sublexicales (traits, phonèmes, ou syllabes) (phonèmes: Cohort, Shortlist, Merge; traits: TRACE)

=> traitement prélexical : input -> sublexical unit code -> contact

#### (B) exemplaires "vécus":

traces en mémoire épisodique de toutes les formes rencontrées (stock dynamique constamment mis à jour)

=> <u>contact direct, sans étape prélexicale</u> (Bybee 2001; Goldinger 1998; Hinzmann 1986; PierreHumbert 2001; Johnson 1997)

## données pour les exemplaires

- ☞ sensibilité aux détails de réalisation "vécus" (Mullenix et al., 1989)\*
- ☞ sensibilité à la fréquence des variantes (Ranbom & Connine, 2007)\*\*
- mots nouveaux: variantes "vécues" seules reconnues (Pitt, 2009)\*\*\*
- \* Les sujets reconnaissent les mots d'autant plus facilement que leur forme détaillée leur a déjà été présentée précédemment; rappel de liste, shadowing, etc. d'autant plus difficile que voix multiples.
- \*\*ex. réduction des d/t de fin de mot d'autant mieux "tolérée" que souvent produite. Suggère que les variantes sont codées telles quelles.
- \*\*\* for newly learned words, only encountered variants are recognized (e.g., center > /senner/)

Mullennix, J. W., Pisoni, D. B., & Martin, C. S. (1989). Some effects of talker variability on spoken word recognition. *Journal of the Acoustical Society of America*, *85*, 365–378.

Pitt, M. A. (2009). How are pronunciation variants of spoken words recognized? A test of generalization to newly learned words. *JML*, *61*, 19-36.

Bybee, J. (2001). *Phonology and language use*. Cambridge: Cambridge University Press.

Goldinger, S. D. (1996). Words and voices: Episodic traces in spoken word identification and recognition memory. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, *22*, 1166–1183.

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. *Psychological Review*, *105*, 251–279. Hintzman, D. L. (1986). "Schema Abstraction" in a multiple-trace memory model. *Psychological Review*, *93*, 411–428.

Hinzman, D. (1986). « Schema abstraction » in a multiple-trace memory model. *Psychological Review*, *93*, 411-428.

Johnson, K. (1997). Speech perception without speaker normalization: An exemplar model. In K. Johnson & J. W. Mullenix (Eds.), Talker variability in speech processing (pp. 145-165). San Diego, CA: Academic Press.

### contre les exemplaires: perceptual learning

#### Principe:

- (1) 'perceptual learning' sur un set d'items => recalibrage de catégories
- (2) le recalibrage se généralise à de nouveaux items

Exemple: perceptual learning avec l'effet Ganong (lexical context)

? ambigu entre /s/ et /f/: sheri? => sheriff; Pari? => Paris (Dutch) (important: \*sheriss and \*Parif are not Dutch words)

(1) <u>learning</u> (with auditory lexical decision):

Group 1 exposed to *sheri?*: ? learned as /f/ Group 2 exposed to *Pari?*: ? learned as /s/

(2) <u>generalization</u> (w/cross-modal AV priming): (<u>important</u>: <u>doof-doos</u> is a minimal pair in Dutch)

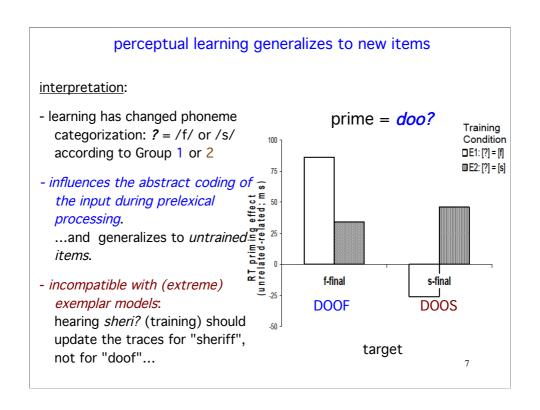
Group 1: doo? facilitates DOOF not DOOS Group 2: doo? facilitates DOOS not DOOF

NB. Dutch minimal pairs: doos 'box'; doof 'deaf' (McQueen et al. 2006) 6

- arguments contre les exemplaires: données de "perceptual learning" (McQueen et al. 2006)

Après (1) on aura sheri? —> SHERIFF pour G1 > G2 et Pari? —> PARIS pour G2 > G1 : car nouveaux exemplaires ?

Sans doute pas, car doo? Interprété comme doof ou doos selon G1 et G2 qui n'ont JAMAIS entendu ces formes


=> Interprétation : recalibrage général des catégories phonétiques /f/-/s/ et traitement prélexical

Norris, D., McQueen, J., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47, 204-238.

McQueen, J., Cutler, A., & Norris, D. (2006). Phonological Abstraction in the Mental Lexicon. Cognitive Science, 30(6), 1113-1126.

recalibration of /s/-/f/ continua identification (Norris et al. 2003):

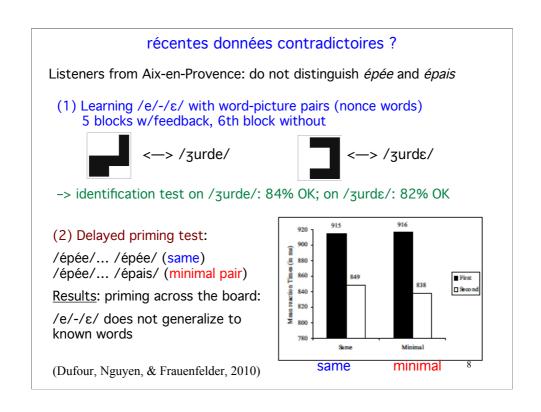
Group 1 biased toward /f/, Group 2 toward /s/



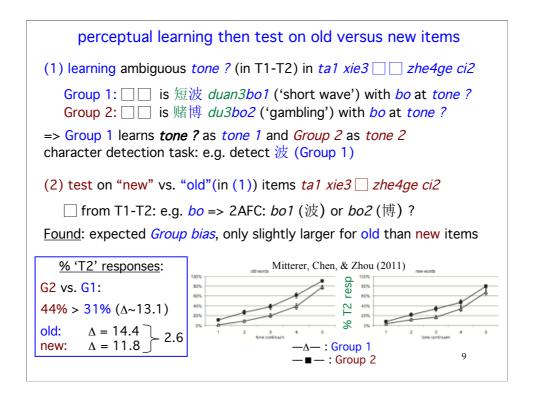
#### Also see:

Kraljic, T., & Samuel, A. (2006). Generalization in perceptual learning for speech. *Psychonomic B & R, 13*(2), 262-268.

Familiarization with either  $\_s(ptk)r\_$  sequences where /s/ -> ? betw. /s/ and /S/, or with idiolectal ?s(/s/ -> ? In all contexts.


Only listeners in the latter condition "learn" to categorize? as /s/. In the former condition,? Is an allophonic variation of /s/ in English dialects such as New Zealand, Australia, etc., including NY Long Island AE dialect.

## See the joke:


Tourist: Excuse me, is it pronounced 'Hawaii' or 'Havaii'?

Benny Hill: Havaii Tourist: Thank you!

Benny Hill: You're velcome!



Dufour, S., Nguyen, N., & Frauenfelder, U. (2010). Does training on a phonemic contrast absent in the listener's dialect influence word recognition? JASA, 127(6).



Effet de recalibrage: environ 13% en moyenne sur tous les 5 pas du continuum Groupe 1 bien biaisé vers ton 1 et groupe 2 vers ton 2

Mais petite différence (2.6) de taille de l'effet en faveur des old items

=> Backbone = representation abstraite du ton

Mais modulé par exemplaires: recalibration plus nette pour bo que pour xu

Mitterer, H., Chen, Y., & Zhou, X. (2011). Phonological abstraction in processing lexical-tone variation: Evidence from a learning paradigm. Cognitive Science, 35, 184-197

### Rôle de l'information suprasegmentale dans l'appariement

• semble important en espagnol (Soto-Faraco et al. 2001) l'info de stress influence l'activation:

*prinCI*– début de *prinClpio* facilite *prinCipio* mais inhibite *PRINcipe* (i.e., "principe" n'est pas préactivé par *prinCI*–)\*

- peut-être moins important en anglais (britannique) (Cutler, 1986).
   Il y a en anglais une douzaine de paires minimales pour la position du stress, comme FOR(e)bear 'ancêtre' vs. forBEAR 'supporter' (NB: pas de réduction vocalique !).
   Cutler trouve que FORbear et forBEAR facilitent également leurs associés (ancestor, endure). Elle conclue que FORbear et forBEAR sont traités comme des homophones
- important en hollandais: VOORnaam and voorNAAM ('first-name' and 'respectable') do not prime each other (delayed identity priming) (Cutler & Donselaar 2001)

10

•esp. príncipe = prince; principio = principe (ou bien 'je commence')

Cutler, A. (1986). Forbear is a homophone: Lexical prosody does not constrain lexical access. Language and Speech, 29 (3), 201-220.

Cutler, A., & Donselaar, W. (2001). Voornaam is not (really) a homophone: lexical prosody and lexical accessin Dutch. Language and Speech, 44 (2), 171-195.

#### Traitement des variations

- (A) variations **arbitraires** (non motivées phonologiquement), deux points de vue sur la tolérance aux variations
- (B) variations motivées phonologiquement (régulières)

voir cours précédents : "processus phonologiques"

par exemple, l'assimilation (régressive/progressive) entraîne une variation régulière : *robe sale > rope sale* 

autres processus : neutralisation, réduction (e.g., voyelle -> /ə/), lénition, spirantization, resyllabation, etc. flapping : (AE) *pretty* > ['puri], *gentle* > [dʒeřl], etc.

NB. distinguer *variation paradigmatique* (phonème remplacé par un autre) et de *variation allomorphique* (réalisation phonétique)

11

Anglais: assimilation de place pour les seules coronales: Coronale --> labiale /\_#labiale; --> dorsale / \_#dorsale e.g., lean bacon --> leam bacon; sweet girl --> sweek girl; sweet boy --> sweep boy etc.

### two ways of dealing with *unmotivated* variation

NB: pas de pb pour les modèles à exemplaires...

## (1) tolérance minimale, pas de "réparation" (Marslen-Wilson et coll.)

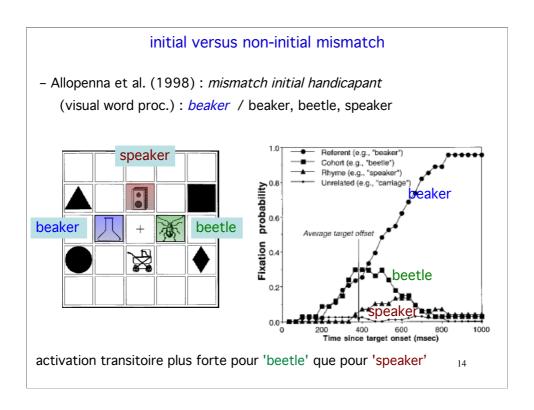
- *correspondance stricte* nécessaire entre *input* et *lexical-form*
- importance particulière des *débuts de mots*
- Motivation: 70% de monosyllabes en anglais : la plupart des distinctions sont de *un seul trait* (e.g., *bed* vs. *bet*)
- => le lexique reflète sans doute la marge de tolérance du système
- Exemple: "cigarette" prononcé shigarette

Pour M-W, *shigarette* est reconnu comme une forme déviante de "cigarette" lors d'une *réanalyse consciente*.

le mot n'est pas reconnu *automatiquement*, il est (ici) "réparé" off-line lors d'un *réexamen conscient* (hors traitement "on-line")

12

Marslen-Wilson, W., Moss, H., & van Halen, S. (1996). Perceptual distance and lexical competition in lexical access. *Journal of Experimental Psychology: Human Perception and Performance*, 22, 1376-1392.


Marslen-Wilson, W, & Zwitserlood, P. (1989). Accessing spoken words: The importance of word onsets. *Journal of Experimental Psychology: Human Perception and Performance*, *15*, 576-585 Marslen-Wilson, W, & Warren, P. (1994). Levels of perceptual representation and process in lexical access: Words, phonemes, and features. *Psychological Review*, *101*, 653-675.

## two ways of dealing with variation

## mispronunciations induce all-or-none effects in online processing

```
(M-W et Zwitserlood, 1989) : cross-modal priming (Dutch)
intact form : honing ---> BIJ (miel-ABEILLE)
(2 features) woning -X-> BIJ (woning = 'habitation')
(1 feature) foning -X-> BIJ (*foning non-mot hollandais)
=> M-W conclusion: strict match required on word-initial phoneme
```

```
convention: ---> = facilite; -X-> = ne facilite pas
```



Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. *Journal of Memory & Language*, *38*, 419–439.

### two ways of dealing with variation

#### (2) "degrés d'activations" variables (Connine et coll.)

- match avec forme canonique <--> degré d'activation élevé pour forme canonique, résiduel ou nul pour forme déviante (compatible avec modèles du type TRACE)
- ☞ "cigarette" prononcé *shigarette*
- "cigarette" est davantage activé par *cigarette* que par *shigarette*Il est possible que *shigarette* n'active pas suffisamment "cigarette" pour que le mot soit reconnu...
  - point méthodologique: degré d'activation "mesuré" par effet d'amorçage intra- ou inter-modal

15

Connine, C. (1994). Horizontal and vertical similarity in spoken word recognition. In C. Clifton, L. Frazier, & K. Rayner (Eds.), *Perspectives on sentence processing* (pp. 107-120). Hillsdale, NJ: Erlbaum.

Connine, C., Blasko, D., & Titone, D. (1993). Do the beginnings of spoken words have a special status in auditory word recognition? *Journal of Memory and Language*, *32*, 193-210.

Connine, C., Blasko, D., & Wang, J. (1994). Vertical similarity in spoken word recognition: Perceptual ambiguity, sentence context and individual differences. *Perception & Psychophysics*, *56*, 624-636.

Connine, C., Titone, D., Delman, T., & Blasko, D. (1997). Similarity mapping in spoken word recognition. *Journal of Memory and Language*, *37*, 463-480.

# two ways of dealing with variation

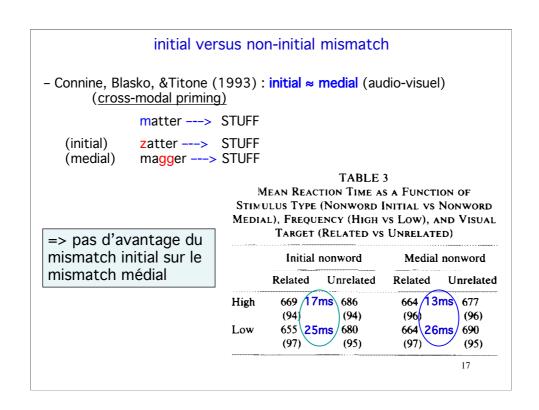
- mispronunciations induce graded effects in online processing
  - cross-modal priming: (Connine, Blasko, &Titone, 1993)

```
    intact form
    service
    --->
    TENNIS

    1 feature ≠
    zervice
    --->
    TENNIS

    2 features ≠
    gervice
    --->
    TENNIS
```

• phoneme monitoring within intact vs. altered forms


example: /t/ in cabinet, \*gabinet, \*\*mabinet, and \*\*\*shuffinet

Phoneme Monitoring Reaction Time (MS) for Words and Minimal, Maximal, and Control Nonwords, Experiment 1

|                   |                      | Stimu                | lus type             |                      |
|-------------------|----------------------|----------------------|----------------------|----------------------|
| Phoneme<br>target | Word                 | Minimal              | Maximal              | Control              |
| /t/<br>/k/        | 408 (92)<br>368 (96) | 444 (86)<br>407 (91) | 469 (84)<br>401 (90) | 492 (84)<br>454 (87) |

Note. Percentage correct are shown in parentheses.

Connine et al. (1997)



Connine, C. M., Titone, D., & Wang, J. (1993). Auditory word recognition: Extrinsic and intrinsic effects of word frequency. *Journal of Experimental Psychology: Learning, Memory, & Cognition*, 19, 81–94.

#### Traitement des variations

- (A) variations arbitraires (non motivées phonologiquement), deux points de vue sur la tolérance aux variations
- (B) variations motivées phonologiquement (régulières)

voir cours précédents : "processus phonologiques"

par exemple, l'assimilation (régressive/progressive) entraîne une variation régulière : *robe sale* > *rope sale* 

autres processus : neutralisation, réduction (e.g., voyelle  $\rightarrow$  /ə/), lénition, spirantization, resyllabation, etc.

flapping: (AE) pretty > ['p.iri], gentle > [dʒɛr̃l], etc.

NB. distinguer *variation paradigmatique* (phonème remplacé par un autre) et de *variation allomorphique* (réalisation phonétique)

• les variations régulières sont tolérées : grâce à quels mécanismes ?

18

Anglais: assimilation de place pour les seules coronales: Coronale --> labiale /\_#labiale; --> dorsale / \_#dorsale e.g., lean bacon --> leam bacon; sweet girl --> sweek girl; sweet boy --> sweep boy etc.

## explications "représentationnelles"

- représentations *multiples* (Connine et coll. 2004-2008)

*les variantes sont représentées*, avec un "poids" reflétant leur fréquence en production (Ranbom & Connine, 2007).

- représentations lexicales sous-spécifiées (Lahiri : FUL) :

leam est compatible avec "lean": dans la représentation lexicale, /n/
n'est pas spécifié pour la place (coronal = "non-marqué")
han n'est pas compatible avec "ham": /m/ est spécifié [labial]

Lahiri & Reetz (2002) (cross-modal priming, allemand)

```
(miel—ABEILLE) (marteau—CLOU)

Honig ---> BIENE Hamer ---> NAGEL

*Homig ---> BIENE *Haner -X-> NAGEL
```

Schriefer, Eulitz, & Lahiri (2006) (ERPs et décision lexicale)

```
(Horde, *Horbe) vs. (Probe, *Prode) : la N400 signale que seul *Prode est traité comme non-mot
```

19

Lahiri, A., & Reetz, H. (2002). Underspecified recognition. In C. Gussenhoven, & N. Warner (Eds.), Labphon 7 (pp. 637-676). Berlin: Mouton de Gruyter. (Featurally Underspecified Lexicon)

Friedrich, C., Eutlitz, C., & Lahiri, A. (2006). Not every pseudoword disrupts word recognition: An ERP study. Behavioral and Brain Functions, 2, 1-36.

Ranbom, L., & Connine, C. (2007). Lexical representation of phonological variation in spoken word recognition. *Journal of Memory and Language*, *57*, 273-298.

Trait coronal non marqué:

Shaw (1991). Consonant harmony systems: the special status of coronal harmony. In C. Paradis & J-F. Prunet (Eds.) The special status of coronals (pp. 125-157). San Diego: Academic Press.

## explications computationnelles

- processus inférentiels : "undoing of the phonological process"

La récupération de la forme lexicale dépend du contexte. Récupération si le contexte motive la variation, sinon rejet

Gaskell & M-W (1996): (cross-modal, priming sentences)

**Priming sentences** visual target We have a house full of fussy eaters: (at leam/brown offset) **LEAN** Sandra will only eat lean(m) bacon. Sandra will only eat lean(m) gammon. **LEAN** Sandra will only eat brown(m) loaves. LEAN

> Mean Response Times (RTs; in Milliseconds) and Mean Error Percentages for Experiment 2 as a Function of Phonological Change and Sentence Type

|               | Changed |         | Unc | Unchanged |  |
|---------------|---------|---------|-----|-----------|--|
| Sentence type | RT      | % error | RT  | % error   |  |
| Viable        | 624     | 6.3     | 625 | 4.9       |  |
| Unviable      | 655     | 6.5     | 615 | 4.5       |  |
| Control       | 679     | 7.8     | 651 | 9.0       |  |

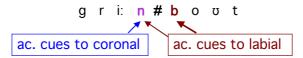
20

(viable)

(unviable)

(control)

Control situation: long RTs (> 650 ms)


'Unchanged' lean – LEAN situation: short RTs (< 630 ms)

Critical (lean changed to leam): long RT for unviable, short RT for viable situation

## explications en termes de processus perceptifs

- "feature parsing" (Gow, 2001-2004) (assimilation data)

Gow note que l'assimilation est rarement catégorielle en parole naturelle : elle est graduelle. Dans green boat, le /n/ de green retient des indices acoustiques pour [n] et [m] :



feature parsing: un segment ne peut avoir qu'un seul trait de place...

- il faut réaffecter les indices en trop => [labial] sur /n/ --> /b/
- => la séquence est perçue [coronal] # [labial]

NB. mécanisme universel : il ne dépend pas de règles phonologiques spécifiques à l'anglais par exemple

## interactions entre phonologie et orthographe

- (1) influence de la phonologie sur le traitement des mots écrits
- Effets de "régularité"

Plus long de lire PINT /paint/ que MINT /mint/ (prononciation de "-int" plus souvent /int/ que /aint/)

Baron & Strawson, 1976; Content & Peereman, 1992

- <u>Catégorisation sémantique</u> (a flower .... ROSE => yes/no)
- Le mot STEAL homophone de STEEL est classé dans la catégorie "métal", ROWS homophone de ROSE dans celle des "fleurs".
- Le non-mot JEAP (pseudohomophone de JEEP) est classé dans la catégorie "véhicule".

Coltheart, Patterson et Leahy, 1994; Van Orden, 1987

22

Ces points seront traités par B. New

## • Détection de lettre

- 'i' détectée à tort dans BRANE, pseudohomophone de BRAIN
- 'i' omise dans CRAIN, pseudohomophone de CRANE
   Ziegler & Jacobs, 1995
- effets de "consistance"

consistance: même orthographe <-> même prononciation

DL plus lente si inconsistance grapho-phonologique (*ville / fille*) ou phono-orthographique (*lisse / dix*)

Stone, Vanhoy, & Van Orden 1997; Ziegler, Montant, & Jacobs 1997

23

## [skip]

Inconsistance grapho-phonologique: même graphie, prononciation différente Inconsistance phono-orthographique: même prononciation, graphie différente

## (2) Influence de l'orthographe sur les mots parlés

#### • Détection/décision de rime

Plus rapide de décider si "tie" rime avec le modèle "pie", que si "rye" rime avec "pie" (ou toast-roast comparé à toast-ghost).

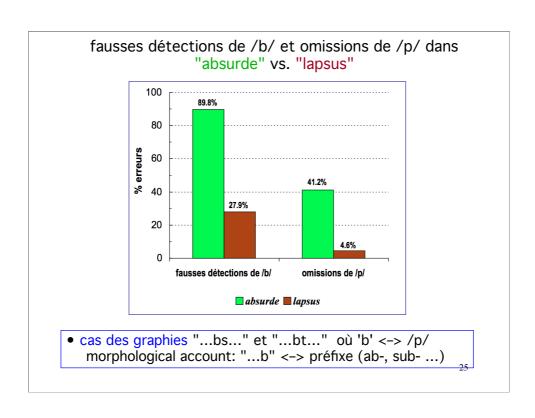
Seidenberg & Tanenhaus, 1979

#### • Détection de phonème

En français, /b/ est très souvent détecté à tort dans absurde, bien que absurde soit prononcé avec un /p/.

Hallé, Chéreau, & Segui, 2000

24


# • <u>Détection de phonème</u>

En hollandais, /k/ est bien plus souvent représenté par la lettre 'k' que par la lettre 'c' :

Le phonème /k/ est détecté plus vite dans "paprika" que dans "replica" mais pas plus vite dans "kabouter" que dans "cabaret".

=> locus post-lexical de l'effet ? (l'effet dépend de la position/PU)

Dijkstra, Fiews & Roelofs, 1995



## • Détection de syllabe

En anglais, /læg/ est plus facilement détecté que /ləg/ dans lagoon, bien que lagoon soit prononcé /ləˈguːn/ (cibles spécifiées auditivement).

Taft & Hambly, 1985

## • Décision lexicale en présentation auditive

Réponses plus rapides pour des mots monosyllabiques si la rime est orthographiquement consistante

```
Exemple : DL plus facile pour robe que pour train /ɔb/ <-> "obe" mais /\tilde{\epsilon}/ <-> {"in", "un", "ain", "ein", etc.} Ziegler & Ferrand, 1998
```

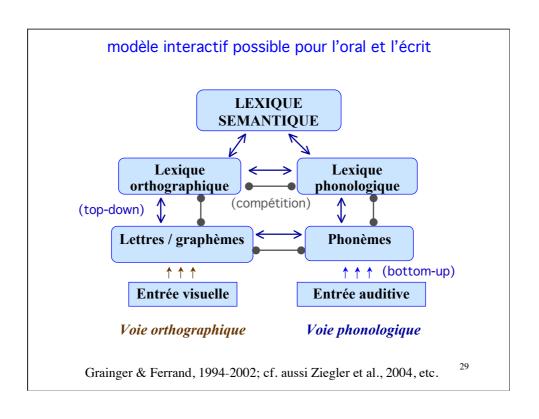
26

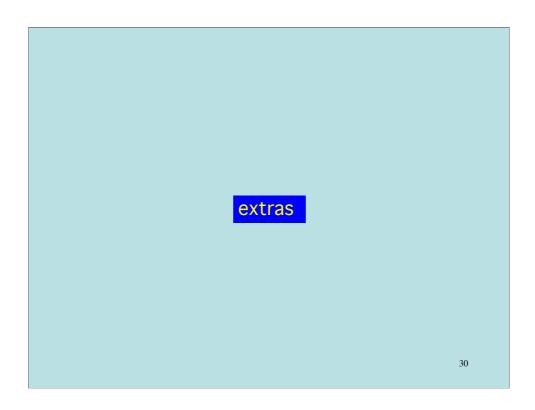
Arguments pour les effets de consistance :

Modèle "bimodal interacti"

## influence de l'orthographe : tâches métalinguistiques

- lien entre orthographe et "conscience phonémique"
- Morais, Cary, Alegria, and Bertelson (1979): difficultés des illettrés (portugais) pour manipuler les phonèmes (ex: suppression, ajout, remplacement) mais pas les syllabes.
- Read, Zhang, Nie, and Ding (1986): même difficultés, avec des chinois lettrés mais n'ayant pas appris le *pinyin*. Pas de difficultés pour les sujets ayant appris le *pinyin*.
  - => conscience phonémique liée à l'écriture *alphabétique* ? (difficile à tester aujourd'hui)
- comptage de "sons":
  - pitch /pitʃ/ vs. rich /ritʃ/ : un son de plus dans pitch
     (enfants : Ehri & Wilce, 1979) ;
  - moins de sons dans /ar/ que dans /am/
     (/ar/ = nom de la lettre 'r')
     (étudiants : Treiman, Tincoff, & Richmond-Welty, 1996)


Tâche de découpage en "parties"


Après exemples simples, un groupe rapporte la première partie, un autre la seconde partie

Autres tâches: renverser l'ordre des syllabes

Blending: exemple en français mettre le début de "lourd" avec la fin de "sec" => /luk/ ou bien /lEk/

=> lourd/sec vs. gare/nuque: lourd/sec => /lEk/; gare/nuque => /gak/

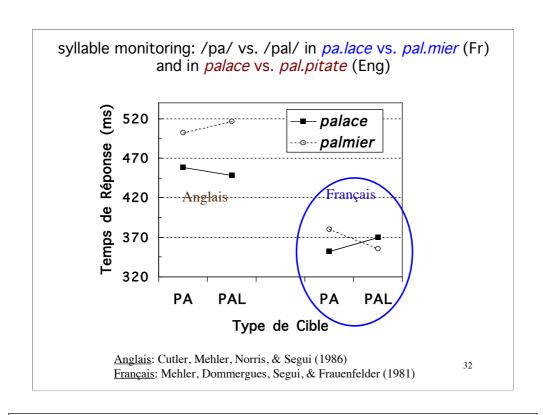




## Unités d'analyse sublexicales plus larges que le phonème

- la *syllabe* (Mehler, Dommergues, Frauenfelder, & Segui, 1981: *The syllable's role in speech segmentation*)

### arguments pour la syllabe :


- syllabe détectée plus vite que phonème
   (Savin & Baver, 1970; Foss & Swinney, 1973; Segui et al., 1981\*)
   (\*strong correlation between phoneme and syllable RTs)
   interprétation : l'analyse en syllabes précède celle en phonèmes
- pal détecté plus vite dans pal.mier que pa.lace et pa plus vite dans pa.lace que pal.mier (Mehler et al. 1981)
- détection du phonème initial d'une syllabe fonction de la complexité syllabique : /b/ détecté plus vite dans /ba/ que /bra/ (Segui et al. 1981)

31

Savin, H., & Baver, T. (1970). The nonperceptual reality of the phoneme. *J. Verbal Learning and Verbal Behavior*, *9*, 295-302.

Foss, D., & Swinney, D. (1973). On the psychological reality of the phoneme: Perception, identification, and consciousness. *J. Verbal Learning and Verbal Behavior*, 12, 246-257.

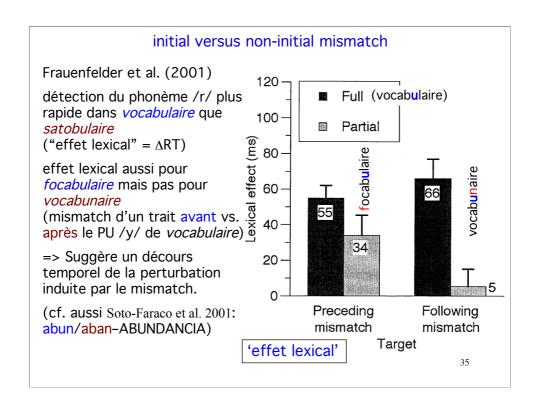
Segui, J., Frauenfelder, U., & Mehler, J. (1981). Phoneme monitoring, syllable monitoring and lexical access. *British Journal of Psychology*, 72(4), 471-477.



## Problèmes de l'effet syllabique

- spécifique à la langue (trouvé pour castillan, catalan, italien, français, portugais, douteux pour le hollandais, pas trouvé pour l'anglais) (Kolinsky, 1998, pour une revue)
- même en français, n'est trouvé que pour des *mots*, et lorsque la *consonne "pivot"* (e.g., /l/ dans *palmier*) est /l/ ou /r/. (Content, Meunier, Kearns, Frauenfelder, 2001)

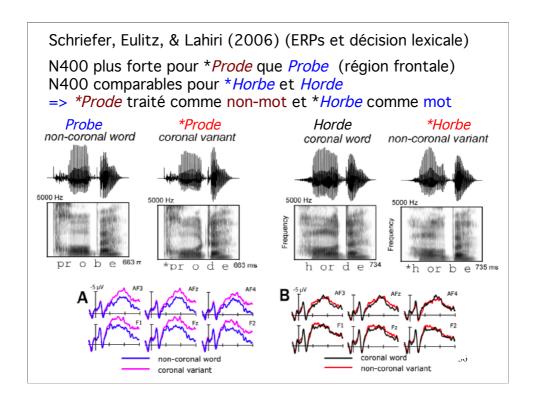
## Proposition de Cutler et collègues : unités rythmiques


- la *syllabe unité de segmentation, pas de représentation* (ne joue pas de rôle dans l'accès au lexique). Unité naturelle de segmentation pour les langues à rythme syllabique seulement.
- Pour les langues à *rythme moraique* (japonais, telugu, ...), l'unité naturelle de segmentation est la more. Pour l'anglais (stress-timed), c'est le pied (foot = intervalle entre deux accents).

## Variations sub-phonémiques

```
Exemples: ? entre /b/ et /p/
- M-W et al. (1996): mismatch subphonémique non toléré
        ?lank -X-> WOOD
                              (blank and plank both are words)
BUT:
       ?ask ---> JOB
                              (task is a word, dask is not)
- Connine et al. (1994) : mismatch sub-phonémique toléré
   pig ---> HOG,* pig -X-> LITTLE; big ---> LITTLE, big -X-> HOG
        ?ig ---> {LITTLE, HOG}
- voir aussi Andruski et al. (1994) (auditif-auditif) :
       pear ---> fruit vs. jet -X-> fruit
       facilitation de fruit par pear <-> VOT de /p/
                                                                  34
```

\* hog: 'porc'


Connine, C., Blasko, D., & Wang, J. (1994). Vertical similarity in spoken word recognition: Multiple lexical activation, individual differences, and the role of sentence context. Perception and Psychophysics, 56, 624-636.



Le mismatch précoce (focabulaire) est absorbé après le PU Le mismatch tardif (vocabunaire) n'a pas eu le temps d'être absorbé ~au même moment

Frauenfelder, U, Scholten, M., & Content, A. (2001). Bottom-up inhibition in lexical selection: Phonological mismatch effects in spoken wordrecognition. *Language and Cognitive Processes*, *16* (5/6), 583-607.

Soto-Faraco, S., Sebastian-Galles, N., & Cutler, A. (2001). Segmental and suprasegmental mismatch in lexical access. *Journal of Memory and Language*, 45, 412-432.



# blending et orthographe

• erreurs de production :

```
"blends" (fusion) involontaires (MacKay, 1972):
```

*shell* pour 'crier': blend de *shout* et *yell* mais jamais *yet* 

- => C1V1C'1 + C2V2C'2 -> C1+V2C'2 plutôt que C1V1+C'2 (blends 'C/VC' plus "naturels" que blends 'CV/C') (<-> structure onset+rime de la syllabe)
- expériences de blending (Treiman, 1983, 1986)

"prenez la première partie de *sack* et la seconde de *not* pour faire un non-mot" => *sat* ou *sot* ?

les réponses sont majoritairement **sot** plutôt que **sat** (anglais...)

=> suggère que les sujets découpent généralement les syllabes en onset et rime.

## Ventura et al. (2001)

• tâche de blending en portugais

En portugais, certains mots CVC s'écrivent avec 'e' muet final : PELE 'peau' prononcé /pɛl/ ; d'autres non : MEL 'miel' /mɛl/

=> l'orthographe influence-t-elle le blending ?

```
CVCV words (e.g., "pele")
                                                 CVC words (e.g., "mel")
/sel/-/kur/
                                       /bar/-/mel/
                                                             /nu [/-/tal/
                    /mir/-/pu [/
                    /mɔl/-/baz/
                                       /səl/-/der/
                                                             /kor/-/da [/
/3er/-/poz/
                                                             /ser/-/lu //
                                       /ser/-/ma [/
/piz/-/gɔl/
                    /pez/-/fur/
                                                             /fi∫/-/ter/
/ral/-/tes/
                    /dur/-/tez/
                                       /sal/-/di [/
                                       /pe ∫/-/3i ∫/
                                                             /fɔ∫/-/lar/
                    /doz/-/bul/
/gɔz/-/kas/
                                       /fɛl/̈-/puʃ/
                                                             /tilĬ-/kɔ∫/
                    /fɔl/-/giz/
/mur/-/rez/
                                       /fa∫/-/ver/
                                                             /pa //-/mil/
/gur/-/tos/
                    /vel/-/pos/
/dɔz/-/tul/
                    /faz/-/tir/
                                       /dε ∫/-/mal/
                                                             /va∫/-/por/
                                       /dar/-/sul/
                                                             /kɔr/-/ʒa∫/
/pul/-/dis/
                    /kur/-/pel/
```

**R=oui**: >80% C/VC pour les CVC; >80% CV/C pour les CVCV suggère "cure", "pele"... analysés CV.CV (influence de l'orthographe) => cu.re + pe.le --> /kul/ plutôt que --> /kɛl/)

## En français:

1. sans 'e' muet final 2. avec 'e' muet

lourd/sec gare/nuque
peur/sauf cure/touffe
char/boy jure/paille
pull/jazz moule/case
cinq/chef moque/bouffe
duc/bœuf cake/baffe

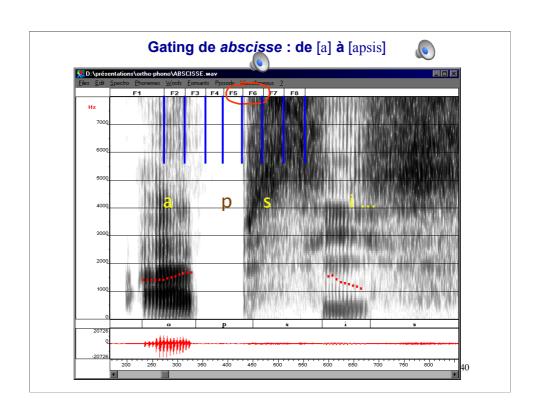
nef/bouc nymphe/tchèque veuf/tank lymphe/jonque choc/seuil rauque/bille deuil/bac veille/manque

# Tentative d'aller plus loin : locus de l'effet ?

idée : forme sonore -> mot -> forme écrite -> 'b' -> /b/

(a) Dans "absurde", détection plus lente pour /b/ que /p/:

759 ms >> 637 ms


<-> stratégie "phonétique" (directe, rapide) pour /p/, "lexicale" (indirecte, plus lente) pour /b/?

(b) Cependant, même pattern pour sujets lents et rapides ... (logiquement, stratégie lente plus fréquente pour sujets lents)

## => Examen du décours temporel de l'effet

Expérience de "gating phonétique"

(tâche : transcription des fragments présentés)



